Spatiotemporal Progression of Microcalcification in the Hippocampal CA1 Region following Transient Forebrain Ischemia in Rats: An Ultrastructural Study

نویسندگان

  • Tae-Ryong Riew
  • Yoo-Jin Shin
  • Hong Lim Kim
  • Jeong Min Cho
  • Ha-Jin Pak
  • Mun-Yong Lee
چکیده

Calcification in areas of neuronal degeneration is a common finding in several neuropathological disorders including ischemic insults. Here, we performed a detailed examination of the onset and spatiotemporal profile of calcification in the CA1 region of the hippocampus, where neuronal death has been observed after transient forebrain ischemia. Histopathological examinations showed very little alizarin red staining in the CA1 pyramidal cell layer until day 28 after reperfusion, while prominent alizarin red staining was detected in CA1 dendritic subfields, particularly in the stratum radiatum, by 14 days after reperfusion. Electron microscopy using the osmium/potassium dichromate method and electron probe microanalysis revealed selective calcium deposits within the mitochondria of degenerating dendrites at as early as 7 days after reperfusion, with subsequent complete mineralization occurring throughout the dendrites, which then coalesced to form larger mineral conglomerates with the adjacent calcifying neurites by 14 days after reperfusion. Large calcifying deposits were frequently observed at 28 days after reperfusion, when they were closely associated with or completely engulfed by astrocytes. In contrast, no prominent calcification was observed in the somata of CA1 pyramidal neurons showing the characteristic features of necrotic cell death after ischemia, although what appeared to be calcified mitochondria were noted in some degenerated neurons that became dark and condensed. Thus, our data indicate that intrahippocampal calcification after ischemic insults initially occurs within the mitochondria of degenerating dendrites, which leads to the extensive calcification that is associated with ischemic injuries. These findings suggest that in degenerating neurons, the calcified mitochondria in the dendrites, rather than in the somata, may serve as the nidus for further calcium precipitation in the ischemic hippocampus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat

Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...

متن کامل

Localization and spatiotemporal expression of IDO following transient forebrain ischemia in gerbils.

Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the kynurenine pathway that converts L-tryptophan to L-kynurenine. Transient forebrain ischemia initiates a series of cellular events that lead to the delayed neuronal degeneration of several brain regions. The goal of this study was to determine the localization of IDO in gerbil brain, and analyze the spatiotemporal expression of...

متن کامل

Probucol Attenuates Oxidative Stress, Energy Starvation, and Nitric Acid Production Following Transient Forebrain Ischemia in the Rat Hippocampus

Oxidative stress and energy depletion are believed to participate in hippocampal neuronal damage after forebrain ischemia. This study has been initiated to investigate the potential neuroprotective effects of probucol, a lipid-lowering drug with strong antioxidant properties, against transient forebrain ischemia-induced neuronal damage and biochemical abnormalities in rat hippocampal CA1 region...

متن کامل

Effect of Cyperus rotundus on ischemia-induced brain damage and memory dysfunction in rats

Objective(s):Global cerebral ischemia-reperfusion injury causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the possible neuroprotective effects of the ethanol extract of Cyperus rotundus (EECR) on a model of global transient ischemia in rat, by evaluating the pathophysiology of the hippocampal tissue and spatial memory. Materials and Methods: Treatment ...

متن کامل

Electrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats

Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016